A unit testing framework.


   The core of the library is the "is" macro, which lets you make
   assertions of any arbitrary expression:

   (is (= 4 (+ 2 2)))
   (is (instance? Integer 256))
   (is (.startsWith "abcde" "ab"))

   You can type an "is" expression directly at the REPL, which will
   print a message if it fails.

       user> (is (= 5 (+ 2 2)))

       FAIL in  (:1)
       expected: (= 5 (+ 2 2))
         actual: (not (= 5 4))

   The "expected:" line shows you the original expression, and the
   "actual:" shows you what actually happened.  In this case, it
   shows that (+ 2 2) returned 4, which is not = to 5.  Finally, the
   "false" on the last line is the value returned from the
   expression.  The "is" macro always returns the result of the
   inner expression.

   There are two special assertions for testing exceptions.  The
   "(is (thrown? c ...))" form tests if an exception of class c is

   (is (thrown? ArithmeticException (/ 1 0))) 

   "(is (thrown-with-msg? c re ...))" does the same thing and also
   tests that the message on the exception matches the regular
   expression re:

   (is (thrown-with-msg? ArithmeticException #"Divide by zero"
                         (/ 1 0)))


   "is" takes an optional second argument, a string describing the
   assertion.  This message will be included in the error report.

   (is (= 5 (+ 2 2)) "Crazy arithmetic")

   In addition, you can document groups of assertions with the
   "testing" macro, which takes a string followed by any number of
   assertions.  The string will be included in failure reports.
   Calls to "testing" may be nested, and all of the strings will be
   joined together with spaces in the final report, in a style
   similar to RSpec 

   (testing "Arithmetic"
     (testing "with positive integers"
       (is (= 4 (+ 2 2)))
       (is (= 7 (+ 3 4))))
     (testing "with negative integers"
       (is (= -4 (+ -2 -2)))
       (is (= -1 (+ 3 -4)))))

   Note that, unlike RSpec, the "testing" macro may only be used
   INSIDE a "deftest" or "with-test" form (see below).


   There are two ways to define tests.  The "with-test" macro takes
   a defn or def form as its first argument, followed by any number
   of assertions.  The tests will be stored as metadata on the

       (defn my-function [x y]
         (+ x y))
     (is (= 4 (my-function 2 2)))
     (is (= 7 (my-function 3 4))))

   As of Clojure SVN rev. 1221, this does not work with defmacro.

   The other way lets you define tests separately from the rest of
   your code, even in a different namespace:

   (deftest addition
     (is (= 4 (+ 2 2)))
     (is (= 7 (+ 3 4))))

   (deftest subtraction
     (is (= 1 (- 4 3)))
     (is (= 3 (- 7 4))))

   This creates functions named "addition" and "subtraction", which
   can be called like any other function.  Therefore, tests can be
   grouped and composed, in a style similar to the test framework in
   Peter Seibel's "Practical Common Lisp"

   (deftest arithmetic

   The names of the nested tests will be joined in a list, like
   "(arithmetic addition)", in failure reports.  You can use nested
   tests to set up a context shared by several tests.


   Run tests with the function "(run-tests namespaces...)":

   (run-tests 'your.namespace 'some.other.namespace)

   If you don't specify any namespaces, the current namespace is
   used.  To run all tests in all namespaces, use "(run-all-tests)".

   By default, these functions will search for all tests defined in
   a namespace and run them in an undefined order.  However, if you
   are composing tests, as in the "arithmetic" example above, you
   probably do not want the "addition" and "subtraction" tests run
   separately.  In that case, you must define a special function
   named "test-ns-hook" that runs your tests in the correct order:

   (defn test-ns-hook []

   Note: test-ns-hook prevents execution of fixtures (see below).


   You can bind the variable "*load-tests*" to false when loading or
   compiling code in production.  This will prevent any tests from
   being created by "with-test" or "deftest".


   Fixtures allow you to run code before and after tests, to set up
   the context in which tests should be run.

   A fixture is just a function that calls another function passed as
   an argument.  It looks like this:

   (defn my-fixture [f]
      Perform setup, establish bindings, whatever.
     (f)  Then call the function we were passed.
      Tear-down / clean-up code here.

   Fixtures are attached to namespaces in one of two ways.  "each"
   fixtures are run repeatedly, once for each test function created
   with "deftest" or "with-test".  "each" fixtures are useful for
   establishing a consistent before/after state for each test, like
   clearing out database tables.

   "each" fixtures can be attached to the current namespace like this:
   (use-fixtures :each fixture1 fixture2 ...)
   The fixture1, fixture2 are just functions like the example above.
   They can also be anonymous functions, like this:
   (use-fixtures :each (fn [f] setup... (f) cleanup...))

   The other kind of fixture, a "once" fixture, is only run once,
   around ALL the tests in the namespace.  "once" fixtures are useful
   for tasks that only need to be performed once, like establishing
   database connections, or for time-consuming tasks.

   Attach "once" fixtures to the current namespace like this:
   (use-fixtures :once fixture1 fixture2 ...)

   Note: Fixtures and test-ns-hook are mutually incompatible.  If you
   are using test-ns-hook, fixture functions will *never* be run.


   All the test reporting functions write to the var *test-out*.  By
   default, this is the same as *out*, but you can rebind it to any
   PrintWriter.  For example, it could be a file opened with


   You can extend the behavior of the "is" macro by defining new
   methods for the "assert-expr" multimethod.  These methods are
   called during expansion of the "is" macro, so they should return
   quoted forms to be evaluated.

   You can plug in your own test-reporting framework by rebinding
   the "report" function: (report event)

   The 'event' argument is a map.  It will always have a :type key,
   whose value will be a keyword signaling the type of event being
   reported.  Standard events with :type value of :pass, :fail, and
   :error are called when an assertion passes, fails, and throws an
   exception, respectively.  In that case, the event will also have
   the following keys:

     :expected   The form that was expected to be true
     :actual     A form representing what actually occurred
     :message    The string message given as an argument to 'is'

   The "testing" strings will be a list in "*testing-contexts*", and
   the vars being tested will be a list in "*testing-vars*".

   Your "report" function should wrap any printing calls in the
   "with-test-out" macro, which rebinds *out* to the current value
   of *test-out*.

   For additional event types, see the examples in the code.

Provides basic facilities for unit testing Clojure code.

Vars in clojure.test


True by default. If set to false, no test functions will be created by deftest, set-test, or with-test. Use this to omit tests when compiling or loading production code.
The maximum depth of stack traces to print when an Exception is thrown during a test. Defaults to nil, which means print the complete stack trace.


Checks multiple assertions with a template expression. See clojure.template/do-template for an explanation of templates. Example: (are [x y] (= x y) 2 (+ 1 1) 4 (* 2 2)) Expands to: (do (is (= 2 (+ 1 1))) (is (= 4 (* 2 2)))) Note: This breaks some reporting features, such as line numbers.
Returns generic assertion code for any test, including macros, Java method calls, or isolated symbols.
Returns generic assertion code for any functional predicate. The 'expected' argument to 'report' will contains the original form, the 'actual' argument will contain the form with all its sub-forms evaluated. If the predicate returns false, the 'actual' form will be wrapped in (not...).


Composes two fixture functions, creating a new fixture function that combines their behavior.


Defines a test function with no arguments. Test functions may call other tests, so tests may be composed. If you compose tests, you should also define a function named test-ns-hook; run-tests will call test-ns-hook instead of testing all vars. Note: Actually, the test body goes in the :test metadata on the var, and the real function (the value of the var) calls test-var on itself. When *load-tests* is false, deftest is ignored.
Like deftest but creates a private var.
Add file and line information to a test result and call report. If you are writing a custom assert-expr method, call this function to pass test results to report.


Returns a vector [filename line-number] for the nth call up the stack. Deprecated in 1.2: The information needed for test reporting is now on :file and :line keys in the result map.
Returns true if argument is a function or a symbol that resolves to a function (not a macro).


Like var-get but returns nil if the var is unbound.


Increments the named counter in *report-counters*, a ref to a map. Does nothing if *report-counters* is nil.
Generic assertion macro. 'form' is any predicate test. 'msg' is an optional message to attach to the assertion. Example: (is (= 4 (+ 2 2)) "Two plus two should be 4") Special forms: (is (thrown? c body)) checks that an instance of c is thrown from body, fails if not; then returns the thing thrown. (is (thrown-with-msg? c re body)) checks that an instance of c is thrown AND that the message on the exception matches (with re-find) the regular expression re.


Composes a collection of fixtures, in order. Always returns a valid fixture function, even if the collection is empty.


Generic reporting function, may be overridden to plug in different report formats (e.g., TAP, JUnit). Assertions such as 'is' call 'report' to indicate results. The argument given to 'report' will be a map with a :type key. See the documentation at the top of test_is.clj for more information on the types of arguments for 'report'.
Runs all tests in all namespaces; prints results. Optional argument is a regular expression; only namespaces with names matching the regular expression (with re-matches) will be tested.
Runs a single test. Because the intent is to run a single test, there is no check for the namespace test-ns-hook.
Runs the tests for a single Var, with fixtures executed around the test, and summary output after.
Runs all tests in the given namespaces; prints results. Defaults to current namespace if none given. Returns a map summarizing test results.


Experimental. Sets :test metadata of the named var to a fn with the given body. The var must already exist. Does not modify the value of the var. When *load-tests* is false, set-test is ignored.
Returns true if the given test summary indicates all tests were successful, false otherwise.


Calls test-vars on every var interned in the namespace, with fixtures.
If the namespace defines a function named test-ns-hook, calls that. Otherwise, calls test-all-vars on the namespace. 'ns' is a namespace object or a symbol. Internally binds *report-counters* to a ref initialized to *initial-report-counters*. Returns the final, dereferenced state of *report-counters*.
If v has a function in its :test metadata, calls that function, with *testing-vars* bound to (conj *testing-vars* v).
Groups vars by their namespace and runs test-var on them with appropriate fixtures applied.
Adds a new string to the list of testing contexts. May be nested, but must occur inside a test function (deftest).
Returns a string representation of the current test context. Joins strings in *testing-contexts* with spaces.
Returns a string representation of the current test. Renders names in *testing-vars* as a list, then the source file and line of current assertion.
Used by the 'is' macro to catch unexpected exceptions. You don't call this.


Wrap test runs in a fixture function to perform setup and teardown. Using a fixture-type of :each wraps every test individually, while :once wraps the whole run in a single function.


Takes any definition form (that returns a Var) as the first argument. Remaining body goes in the :test metadata function for that Var. When *load-tests* is false, only evaluates the definition, ignoring the tests.
Runs body with *out* bound to the value of *test-out*.